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ABSTRACT

A new statistical–dynamical scheme is presented for predicting integrated kinetic energy (IKE) in North

Atlantic tropical cyclones from a series of environmental input parameters. Predicting IKE is desirable

because the metric quantifies the energy across a storm’s entire wind field, allowing it to respond to changes

in storm structure and size. As such, IKE is especially useful for quantifying risks in large, low-intensity,

high-impact storms such as Sandy in 2012. The prediction scheme, named the Statistical Prediction of

Integrated Kinetic Energy, version 2 (SPIKE2), builds upon a previous statistical IKE scheme, by using a

series of artificial neural networks instead of more basic linear regression models. By using a more complex

statistical scheme, SPIKE2 is able to distinguish nonlinear signals in the environment that could cause

fluctuations in IKE. In an effort to evaluate SPIKE2’s performance in a future operational setting, the

model is calibrated using archived input parameters from Global Ensemble Forecast System (GEFS)

control analyses, and is run in a hindcast mode from 1990 to 2011 using archived GEFS reforecasts. The

hindcast results indicate that SPIKE2 performs significantly better than both persistence and climatological

benchmarks.

1. Introduction

Integrated kinetic energy (IKE) is a recently de-

veloped metric that is designed to approximate the

damage potential of landfalling tropical cyclones

(Powell and Reinhold 2007). As its name suggests, IKE

is defined as a summation of the kinetic energy within

the near-surface wind field of a tropical cyclone (TC). By

integrating energy across a large portion of a storm’s

wind field, IKE considers the overall structure of a TC.

This is in stark contrast to many other existing hurricane

metrics, which often quantify only a wind or pressure

extreme at a single point within a TC. Intensity metrics

such as maximum sustained wind speeds (VMAX) are

undoubtedly useful for assessing themaximum potential

damage caused by the winds in a TC (e.g., Emanuel

2005; Bell et al. 2000), but they do not paint a complete

picture of storm damage potential.

In the decade following the landfall of Hurricane

Wilma, no major hurricanes (VMAX . 96 kt; 1 kt 5
0.5144ms21) have made landfall in the United States.

This drought is thought to be a rather rare event, (Hall

and Hereid 2015), depending on the metric that is used

to classify major hurricanes (Hart et al. 2016). Despite

this perceived quiet period of significant U.S. hurricane

activity, there has been no shortage of damaging storms

that have made landfall in the past decade. According to

initial estimates from the National Hurricane Center,1
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Hurricanes Ike (AL092008), Irene (AL092011), and

Sandy (AL182012) each caused more than $15 million

(U.S. dollars) in losses across the United States during

the major hurricane drought despite each storm’s some-

what weak landfall intensity. This disconnect between

VMAX and damage often occurs because storm size and

structure must also be considered to properly evaluate

storm surge potential (e.g., Irish et al. 2008). Since Sandy,

Irene, and Ike were such large storms, they were able to

produce higher storm surge and damage totals than oth-

erwise would be expected by storms of similar intensities.

For this reason, it is likely that the IKE metric could add

value to existing intensity metrics, by anticipating the

higher damage potential of larger landfalling TCs (Powell

and Reinhold 2007), especially considering that Ike,

Sandy, and Irene all ranked very highly in terms of IKE

relative to other storms in the historical record (Kozar

and Misra 2014, hereafter KM14).

Despite the potential advantages of IKE, the concept

of forecasting the energy metric in real time is still in its

infancy. Currently, operational forecasters have little to

no guidance to predict IKE. Recently, KM14 explored

whether or not it is feasible to fill that void with a simple

statistical model in a proof-of-concept exercise. The

resulting statistical model from that study was named the

Statistical Prediction of Integrated Kinetic Energy

(SPIKE), and it used linear regression to predict changes

of IKE froma series of environmental predictors.Despite

its simplicity, SPIKE was ultimately capable of out-

performing a persistence forecast in a perfect-prognostic

mode, indicating that statistical–dynamical forecasts of

IKE might be possible in the future.

Building upon those results, the focus of this study is to

further evaluate the operational potential of IKE fore-

casts using a more sophisticated statistical–dynamical

scheme in a hindcast mode. Despite the successes of the

proof-of-concept SPIKE model from KM14, linear re-

gression is suboptimal for statistical weather prediction

because the earth system is quite complex and contains

several nonlinear signals. As such, the fixed linear re-

gression coefficients in the SPIKE model will never be

able to fully process the complex changing relationships

between the environment and IKE variability within a

TC. Therefore, a second-generation version of SPIKE is

developed in this work by utilizing a more complex and

nonlinear statistical framework in lieu of linear re-

gression. More specifically, SPIKE, version 2 (SPIKE2),

utilizes a series of artificial neural networks (ANNs) to

predict IKE tendency from a similar series of environ-

mental input parameters. Ultimately, these networks are

capable of learning and anticipating complex patterns in

the environment, and as a result they are better suited to

model a nonlinear system.

Furthermore, SPIKE2’s evaluation will be moved

from a perfect-prognostic space previously used in the

initial KM14 work to a hindcast space. Obviously, in an

operational setting, a statistical–dynamical forecast

scheme must contend with imperfect input parameters

that contain forecast errors of increasing magnitude

with increasing lead time. Therefore, by running SPIKE2

in a hindcast mode with model data from the National

Oceanic and Atmospheric Administration (NOAA)

Second-Generation Global Ensemble Reforecast ar-

chive (Hamill et al. 2013), we are able to more compre-

hensively measure the potential performance of the IKE

prediction models.

The next section discusses the historical and refor-

ecast data that are used to calibrate and evaluate the

SPIKE2 neural network system. In the subsequent sec-

tions, the discussion shifts toward the methodology and

procedures for creating, calibrating, and evaluating the

neural networks used in SPIKE2. Finally, the calibration

and hindcast performance of SPIKE2 is compared

against various persistence and climatology benchmarks

for Atlantic TCs between 1990 and 2011 in the penulti-

mate section, which is followed by the conclusions.

2. Historical and model reforecast data

Similar to KM14, a historical record of IKE in North

Atlantic TCs is used to train and validate the SPIKE2

neural networks. This historical record covers the 1990–

2011 hurricane seasons, and includes over 5000 (in total)

6-hourly fixes from nearly 300 individual storms (Misra

et al. 2013). Since gridded wind fields are not available

for all of these cases, the IKE values contained in this

record are all estimated from operational wind radii and

intensity metrics in the extended best track dataset

(Demuth et al. 2006) using a series of equations from

Powell and Reinhold (2007) andMisra et al. (2013). The

mean value of IKE across all of the storm fixes included

in our historical archive is 35 terajoules (TJ), with a

standard deviation of 43 TJ. The distribution of ob-

served IKE values takes a somewhat lognormal shape

with a long tail toward higher values (KM14). As such,

although most storms never reach 50 TJ of IKE, Hur-

ricane Sandy likely had more than 400 TJ of IKE before

it made landfall in New Jersey in 2012.

It should also be noted that past works have docu-

mented significant uncertainty within the historical record

of wind radii that fluctuates depending on the data plat-

forms that are available when analyzing each storm (e.g.,

Knaff et al. 2014; Landsea and Franklin 2013). Therefore,

our historical IKE record, which again is based on the

operation wind radii, likely inherits many of the same

uncertainties found in the extended best track dataset.
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Unlike KM14, SPIKE2’s environmental input vari-

ables are drawn from a historical model reforecast

database during the same 1990–2011 interval. The

second-generation Global Ensemble Reforecast archive

(Hamill et al. 2013) is selected as the source for this

model data because it includes model runs dating back

multiple decades using a static February 2012 opera-

tional configuration (version 9.0.1) of the National

Centers for Environmental Prediction (NCEP) Global

Ensemble Forecast System (GEFS).

These archived GEFS reforecasts include forecasts

out to 16 days beyond the initialization time. The first

8 days of the forecast are run at T254 horizontal reso-

lution (;50km) with 42 vertical levels. The latter half of

the forecast is run at a lower T190 resolution (;70km),

with the same 42 vertical layers. Each of the reforecast

runs is initialized once daily at 0000 UTC, as opposed

to the 6-hourly approach for generating operational

GEFS forecasts. The initial conditions for the reforecast

dataset are produced from the Climate Forecast System

Reanalysis (CFSR; Saha et al. 2010) prior to February

2011 and operational Gridpoint Statistical Interpolation

analysis system after that time.

The reforecast archive includes 98 output fields from

initial time out to F 1 384h for each of the daily GEFS

reforecasts.2 The archived data are stored at 3-hourly

intervals for the first 72h of the forecast and then at

6-hourly intervals after that time. Each meteorological

field is bilinearly interpolated down to a somewhat coarse

18 resolution global grid. In addition to the 18 datasets, a
smaller selection of 28 fields is also stored in the GEFS’s

higher-resolution nativeGaussian grid (;0.58). However,

the higher-resolution fields are all single-level variables,

primarily near the surface. As a result of this limitation,

mid- and upper-atmospheric dynamic and thermody-

namic fields (winds, temperatures, humidity, etc.) are

only available in the 18 grids. Therefore, to maximize

consistency, we use only the 18 data to examine the dy-

namical and thermodynamical processes that relate to

IKE variability for our SPIKE2 neural network system.

As its name suggests, the GEFS archive does not just

include a single deterministic forecast. In fact, the

reforecast dataset comprises 11 ensemble members (1

control run, and 10 perturbation runs) compared to 21

ensemble members in the operational GEFS. For the

purposes of this work, only the control run in the GEFS

reforecast set is considered, but future works can and

should clearly expand upon these results to produce

probabilistic forecasts that resolve the uncertainty in the

model’s initial environment.

This GEFS reforecast dataset includes some note-

worthy biases with regards to resolving TCs that will be

addressed here. Obviously, the GEFS reforecasts will

include position and intensity errors, and the refor-

ecasted environment is expected to be imperfect as well,

with all errors increasing as lead time increases. For

reference, Galarneau and Hamill (2015) analyzed track

errors in the GEFS reforecast archive for TCs in the

Gulf of Mexico between 1985 and 2010 and found av-

erage positions errors to be 100km with a lead time of

24 h, 250 km with a lead time of 72 h, and 400 km with a

120-h forecast interval. Typically, these track reforecasts

in the Gulf of Mexico were found to have a left and slow

bias relative to the storms motion.

Furthermore, Galarneau and Hamill (2015) also in-

dicated that the GEFS reforecasts had a significant and

consistent low-intensity bias. This does not come as a

surprise and leads us to the potentially most concerning

issue for using the GEFS reforecast database in this

study. Simply put, the 18 horizontal resolution data

taken from the model will not be sufficient to properly

resolve the wind field of a TC. As a result, intensities will

be underestimated, and wind fields may be too broad. In

fact, the GEFS reforecasts may fail to generate a TC

vortex altogether in some extreme scenarios.

However, since we are not trying to predict IKE di-

rectly from the model’s wind field, but instead by re-

lating environmental parameters to IKE variability, this

low-resolution data might still be sufficient, albeit less

than ideal. By using the lower-resolution GEFS refor-

ecast data, we can estimate the lower bounds of skill

for a real-time version of SPIKE2. Furthermore, the

static model configuration provided by the GEFS re-

forecast dataset (Hamill et al. 2013) allows us to focus on

the performance of the SPIKE2 predictive scheme in-

dependent of changes in the underlying dynamical

model’s configuration and performance.

3. Selection of input parameters for
statistical–dynamical prediction

Before the neural networks can be constructed, we

must first establish which environmental and storm-

specific input parameters will be taken from the GEFS

control reforecasts to produce predictions of IKE vari-

ability. The initial SPIKEmodel built in KM14 utilized a

series of 14 predictors that contained a significant linear

relationship with IKE variability, many of which were

taken directly from the Statistical Hurricane Intensity

Prediction Scheme (SHIPS) developmental dataset

(DeMaria and Kaplan 1999). These input parameters in-

cluded various environmental predictors (both dynamical

and thermodynamical), storm-specific parameters2 http://www.esrl.noaa.gov/psd/forecasts/reforecast2/.
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(e.g., position, minimum pressure), and persistence

values of IKE based on known relationships between

IKE and the environment (e.g., Maclay et al. 2008;

Musgrave et al. 2012). However, since these parameters

were selected based on their linear relationships with

IKE, it is necessary to reselect predictors to highlight the

nonlinearities in the storm-environment system that

hopefully can be captured by the more sophisticated

neural network scheme utilized here for SPIKE2.

As was done in KM14, the goal in selecting these

parameters should be to target physical processes that

govern variability with a TC’s structure and ultimately

the IKE index. Therefore, we started with a large pool of

predictors, including both predictors used in the linear

model that had clear and justifiable relationships with

IKE as well as control variables such as day of month.

Properly tuning a nonlinear complex neural network is a

bit more difficult than tuning a linear regression model

as there are more weights and neurons than there are

coefficients in a linear regression model. Nonetheless, as

we constructed the neural network we removed pre-

dictors if network performance over the testing sample

increased by subtracting the predictor. As such, each of

the control parameters and a few of the other environ-

mental predictors with weaker ties to IKE were not se-

lected for the final version.

Ultimately, we settled on 18 input parameters for

SPIKE2, each of which is related to targeted relation-

ships between the environment and IKE, in order to

maximize the neural networks potential predictive

power. The specific predictors are listed in Table 1.

From this point forward, each predictor will be referred

to by its abbreviation in the table. This predictor list is

very similar to those used in the linear SPIKEmodel, but

does include a total of four additional predictors. As

such, we acknowledge that a few of these predictors

could be removed, and the performance of SPIKE2

would likely not change by an appreciable margin.

However, removal of any of the predictors did not seem

to improve validation performance, suggesting that the

predictors were not setting the model back via over-

fitting. Therefore, we felt that by including some of these

extra predictors, the neural network may have a better

chance to resolve some of the nonlinear signals between

the environment and TCs if we were careful to limit the

number of neurons in the ANN, thus minimizing the

chances of overfitting.

Nonetheless, we ran a series of perturbation tests and

case studies to ensure that each individual variable had

some physical relationship that could explain how it is

affecting projections of IKE from SPIKE2. For brevity,

the remaining discussion in this section is meant to

highlight the physical relationships that can explain how

each of the individual predictors affect IKE variability,

followed by a short explanation about how the pre-

dictors are directly calculated from the model fields.

Predictors such as D200, VORT, SHTD, and SHRD

are designed to represent the certain dynamical features

(upper-level divergence, low-level vorticity, weak east-

erly shear) that are favorable for TC development.

These predictors were some of the more significant

predictors in the linear regression SPIKE model, and

their impact over SPIKE2’s IKE projections remains

strong. Meanwhile, SST, T150, and VMPI are meant to

TABLE 1. Variables used in the SPIKE2 neural networks. These input parameters are obtained from GEFS reforecasts and analyses,

NOAAOISSTs, and the historical record.Many of these predictors are inspired by the parameters contained in the SHIPS developmental

dataset.

Variable Definition Unit

PIKE Persistence of IKE TJ

dIKE12 Previous 12-h change of IKE TJ

VMAX Max sustained wind speed kt

VMPI Diff between max potential intensity and VMAX kt

LAT Lat of storm’s center 8N
LON Lon of storm’s center 8W
MSLP Min sea level pressure hPa

PENV Avg surface pressure (averaged from r 5 0–800 km) hPa

VORT 850-hPa vorticity (r 5 0–1000 km) 1027 s21

D200 200-hPa divergence (r 5 0–1000 km) 1027 s21

SHRD 850–200-hPa shear magnitude (r 5 0–800 km) kt

SHTD 850–200-hPa shear direction (r 5 0–800 km) 8
RHLO 850–700-hPa relative humidity (r 5 0–800 km) %

RHMD 700–500-hPa relative humidity (r 5 0–800 km) %

T150 150-hPa temperature (r 5 0–800 km) 8C
SST Sea surface temperature 8C
SDAY Time after tropical storm genesis Days

PDAY Time from peak of season (10 Sep) Days
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be tied to thermodynamical properties that govern the

maximum intensity of the storm, the height of the tro-

popause, and how far a storm has to go before it reaches

said maximum intensity (e.g., Emanuel 1988; Bister and

Emanuel 1998). RHLO and RHMD capture well-

known relationships between moisture and TC devel-

opment. MSLP, PENV, and VMAX are storm-specific

parameters that give some information about the TC’s

intensity and breadth at the validation time, wherein a

more intense storm or a larger storm with all else being

equal will have higher wind speeds and more IKE. LAT,

LON, SDAY, and PDAY obviously give information

about the storm’s position and time. These can be useful

for identifying climatological tendencies across the ba-

sin. Finally, predictors such as PIKE and dIKE12 give

information about persistence (i.e., how much IKE the

storm had previously, and was it gaining or losing IKE

previously) that can be useful for predicting future trends

in certain instances.

However, as alluded to in the opening section, the

signals between IKE and these predictors are quite

complex. Unlike traditional storm development, which

has a somewhat straightforward relationship with some

of these predictors (i.e., the combination of low shear

and high SSTs typical translates to a stronger storm all

else being equal), IKE is also tied to storm size and the

many different processes that govern it. For instance,

many storms tend to expand as they move poleward and

interact with other baroclinic features or through

extratropical transition (e.g., Evans and Hart 2008). As

such, recurving TCs often gain IKE in midlatitude en-

vironments that would traditionally be considered

nonfavorable for development (Maclay et al. 2008).

Considering that extratropical transition occurs in just

under half of all Atlantic TCs (Hart and Evans 2001),

our prediction scheme must be calibrated to anticipate

the correct IKE tendencies from these complex signals.

As a result, the nonlinear equations within the ANNs

will also use predictors such as LAT, SHRD, T150,

RHLO, and SST to determine whether or not a storm is

likely to expand in size (and also in IKE) from baroclinic

forcings. Encouragingly, some simple case studies re-

vealed that a hypothetical storm in the midlatitudes

(high LAT), late in its life cycle (high SDAY) will ac-

tually gain IKE as expected in a more baroclinic envi-

ronment with lower SSTs and higher SHRD. However,

if the storm is under a similar environment in the deep

tropics or if shear and SSTs are too prohibitive in the

midlatitudes, the neural networks will correctly identify

that the storm is more likely to decay. Ultimately, by

considering both baroclinic influences and traditional

developmental mechanisms from this wide-ranging

predictor base through a nonlinear system of equations,

the ANNs should be able to improve upon the

results of KM14.

The majority of the predictors discussed above (LAT,

LON, MSLP, VORT, D200, etc.) are calculated directly

from the corresponding TC signature within 3D atmo-

spheric fields from the GEFS’s control run. However, it

should be noted that the GEFS dataset by itself is in-

sufficient to calculate all 18 of the input parameters. For

instance, some of the input parameters require in-

formation about the ocean surface (VMPI, SST), time

and date of year (SDAY, PDAY), and past values of

IKE (PIKE, dIKE12). Therefore, to obtain hindcasts for

each of the input parameters the GEFS reforecast

dataset will be supplemented with a number of other

datasets. Daily 18 NOAA Optimum Interpolation SST

(OISST; Reynolds et al. 2007) is used to estimate ob-

served ocean surface conditions. The historical IKE re-

cord (derived from the extended best track dataset) is

used to produce the persistence parameters, and finally

the NHC best track dataset is used to get the time in-

formation for each storm fix.

Once the input parameters are calculated from the

GEFS control run for all forecast hours between initial

time and T 1 72h, each parameter is normalized by its

sample within the GEFS control run for all storms be-

tween 1990 and 2011. Normalizing the input parameters

offers the benefit of filtering out some of the systematic

biases in the GEFS, which in turn should enhance the

performance of the operational IKE prediction schemes.

4. Setup of artificial neural network for SPIKE2

With the predictors and data sources now established,

this section details how the artificial neural networks are

constructed, calibrated, and then run in a hindcast mode.

As highlighted earlier, ANNs are chosen for SPIKE2

because of their ability to resolve and adapt to changing

nonlinear signals in a certain system (e.g., Kriesel 2007).

Thanks in part to their versatility, ANNs have been used

in meteorology over the past several years to complete a

wide array of tasks. A nonexhaustive list of tasks that

ANNs have been used for includes evaluating uncer-

tainty in hurricane wind analyses (DiNapoli et al. 2012),

processing remotely sensed data (e.g., Atkinson and

Tatnall 1997), classifying circulation patterns (e.g., Cawley

and Dorling 1996), predicting troposphere ozone levels

(e.g., Abdul-Wahab and Al-Alawi 2002), forecasting

wind speeds (Cao et al. 2012), forecasting precipitation

and flooding (e.g., Hapuarachchi et al. 2011), and pre-

dicting the strength of the Indian monsoon on a seasonal

scale (Shukla et al. 2011). A more detailed summary of

earlier ANN applications in meteorology can be found

in a review by Gardner and Dorling (1998).
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a. Network hierarchy and algorithms

The SPIKE2 prediction scheme will be built using a

system of multiple two-layer feed-forward ANNs. Our

two-layer feed-forward networks’ hierarchy includes a

hidden layer with 20 artificial neurons and an output

layer with a single neuron that will ultimately produce

the desired results from the input parameters. The 20

neurons were chosen for the hidden layer to maximize

predictive skill based on the results of an exhaustive

search test, in which we found that this number of neu-

rons corresponded to the best validation performance

over the test subsample. By testing model performance

with a wide varying number of neurons in this exhaustive

search, we were able to find the approximate point at

which ANN complexity is small enough to minimize the

chance of overfitting, without compromising its ability to

recognize and generalize the nonlinear signals in the

TC-environment system.

In our case, the output of the neural networks will be

IKE tendency for a given forecast hour, or in other

words the difference between IKE at validation time

and IKE at initialization time. Meanwhile, the 18 nor-

malized parameters discussed in section 3 are selected as

the input parameters of the neural network. As such, the

goal of each ANN is to produce an estimate of IKE

tendency from environmental and storm-specific values

within a model solution.

Ultimately, each of these ANNs within the SPIKE2

scheme are trained using a shared learning algorithm,

wherein the networks are calibrated using a set of input

parameters and known target (IKE tendency). The

weights of the network’s neurons are designed to adapt

from a somewhat random initial value to a more optimal

value, as the error function reaches a minimum. More

specifically, the learning algorithm uses a Levenberg–

Marquardt backpropagation algorithm (Marquardt

1963) to find this error minimum. This specific algorithm

is designed to solve nonlinear least squared problems

and is typically thought to be an efficient and stable

method for converging at an optimal solution in neural

network learning (e.g., Hagan and Menhaj 1994).

b. Training, validation, and test samples for
calibration

To avoid overfitting and to promote generalization in

the above supervised learning algorithm, the historical

input and target output data series that are used to

construct the ANNs will be randomly split into three

subsets. The first subset of data, named the training

sample, comprises 70% of the input and target series. As

its name suggests, the training sample is used to train the

network by establishing the optimal weights within the

neurons. The validation sample is a smaller subset,

comprising 15% of the historical input and target series.

This subset is ultimately used to determine when the

neural network can stop learning based on the network’s

ability to generalize effectively. As such, the learning

algorithm searches for the point at which the neural

network has the least amount of error over the valida-

tion subset during calibration. Finally, the third subset of

input and target data is called the testing sample. This

test sample is not used in the calibration of the model in

any way. Instead it simply provides a more accurate

measurement of out-of-sample network performance

during calibration.

It should be noted that the three subset samples used

in calibration are not entirely independent from one

another because of storm-based serial correlation The

general population of calibration data for any given

forecast hour contains multiple target IKE tendency

values from long-lived storms, but will not ever contain

multiple sets of predictors from the same model run.

Furthermore, each GEFS run that predictors are taken

from is separated by at least 24 h from the next closest

analysis, as the GEFS is only initialized once daily in the

NCEP reforecast dataset. As KM14 showed, past IKE

change did not have significant ties to future IKE ten-

dency beyond the first 24 h. Therefore, storm-based

serial correlation between subsequent target IKE

tendency values for each forecast hour should be

somewhat limited. Nonetheless, these three subsets are

only used in the calibration of individual neural net-

works. Once the weights are established with analyses as

detailed in section 5, the evaluation exercises done in

section 6, will use out-of-sample hindcast data to drive

the neural network in an effort to best simulate how the

models may perform in real time.

c. Neural network random variability

Inevitably, the methodology used to construct the

neural networks introduces random variability into each

individual ANN. Specifically, random variability is first

introduced when the general population of input and

target parameters from 1990 to 2011 is randomly split

into the three separate subset samples. Additional ran-

dom variability is introduced to the neural networks

because the weights within the neurons are initialized

somewhat randomly before arriving at their optimal

weights. Ultimately, the random variability makes it all

but impossible for two ANNs to be exactly identical to

one another, even if they are calibrated on the exact

same input and target output datasets. Each neural

network weighs connections in the nonlinear system

somewhat differently, and as a result, some of the net-

works will seem more accurate in certain situations but
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less accurate in other situations. Therefore, it is in-

sufficient to base SPIKE2 off a forecast from just a single

neural network.

Instead, SPIKE2 will utilize a system of 100 individual

neural networks to make its prediction of IKE tendency

for each of the forecast intervals (i.e., a separate system

of neural networks for each forecast interval). As shown

by the schematic of SPIKE2 (Fig. 1), the system of

neural networks will produce 100 separate independent

predictions of IKE tendency from a single set of input

parameters. A deterministic forecast of IKE tendency

from SPIKE2will be taken from themedian of these 100

individual predictions. Using the median from a large

sample of ANNs helps to minimize the random vari-

ability present in a single neural network’s forecast, thus

allowing SPIKE2 to focus on the true skill of the neural

networks. The overall skill of this deterministic forecast

will be discussed at length in section 6.

Not covered in this paper for brevity, but in devel-

opment, are a series of probabilistic products that take

each of the 100 individual ANNs within SPIKE2 into

account, rather than just the median estimation. These

SPIKE2 probabilistic products are used to evaluate the

uncertainty within the ANN statistical scheme from a

single set of input parameters, as each ANN within

SPIKE2 has a slightly different set of weights. Proba-

bility of exceedance, uncertainty ranges, and error bars,

are just a small sample of some of the probabilistic

utilities that are possible with SPIKE2 before even

considering the idea of forcing the model with a wide

array of input parameters frommultiple forecast models

or ensembles.

d. Comparison of neural network and linear model
performance

Once again, the primary goal for developing SPIKE2

is to create a statistical dynamical model that is capable

of predicting IKE in a hindcast mode, which would

mark a significant step toward moving to real-time op-

erational forecasts of IKE. This objective differs from

the goals of the linear regression version of SPIKE in

KM14. That previous linear regression model was de-

signed in a perfect prognostic mode to prove that IKE

prediction is possible when given accurate environ-

mental predictors. As a result of the different objectives

and the different running environments (perfect prog-

nostic vs hindcast), SPIKE and SPIKE2 are trained on

two completely different sets of predictors, even if the

storms in the calibration and evaluation sample are

identical.

Therefore, to explicitly show the advantages of the

new neural network methodology over the previously

used linear regression model, we also created a perfect

prognostic version of our neural networks using the

same data source (developmental SHIPS; DeMaria and

Kaplan 1999) that was used for calibration and evalua-

tion of the SPIKE model in KM14. Unsurprisingly, the

added flexibility provided by the nonlinear equations

allowed the neural network to outperform the linear

regressionmodel across a 1995–2011 comparison period.

For instance, SPIKE2 has a mean absolute error of 12.6

TJ over its training sample at its longest 72-h forecast

interval. In contrast, the linear regression model has a

comparable mean absolute error of 14 TJ at a much

shorter 24-h forecast interval. As such, we will progress

onward out of the perfect prognostic space, and begin to

calibrate the neural networks with predictors from nu-

merical analyses in section 5, in an effort to prepare the

neural networks for evaluation with hindcast predictors

in section 6.

5. Calibration of neural networks using GEFS
analyses

Ultimately, to establish the weights of the ANNs, we

calibrate the entire system with targets of IKE tendency

taken from our historical record and normalized input

parameters taken from the control 0-h analyses (F00) at

validation time within the GEFS reforecast archive.

These analyses represent the best estimation for ob-

served environmental conditions within the model

data’s 18 resolution. As such, the SPIKE2 system will be

calibrated to accept reforecast input parameters from

the same coarse resolution when it is ultimately evalu-

ated in a hindcast mode. It is important to note that the

FIG. 1. Schematic of the SPIKE2 neural network system. A

single set of input parameters is passed into each of the 100 in-

dependent artificial neural networks (ANN1, ANN2, . . . , ANN100)

that make up SPIKE2. Each network produces its own separate

prediction of IKE tendency based on the same input parameters.

The median of these predictions is used as SPIKE2’s deterministic

prediction, but each individual prediction can be used for probabi-

listic forecasting.
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F00 analyses do not include forecast errors. Therefore,

only the persistence IKE predictor will change with

advancing forecast hour as the persistence IKE value

becomes further removed from the validation time.

Since the GEFS reforecast runs are only initialized at

0000 UTC, the maximum sample size for the F00 cali-

bration dataset is the 1377 storm fixes that occur at

0000 UTC between 1990 and 2011. However, SPIKE2

requires persistence parameters of varying forecast lead

times. Therefore, the sample size of the calibration

dataset will decrease with increasing forecast hour be-

cause short-lived storms will not have longer-term per-

sistence values. For comparison purposes, there are 1097

fixes at a forecast hour of 12 h and 614 fixes for the 72-h

forecast interval.

The performance of SPIKE2’s deterministic forecast

for the analysis-based calibration dataset is shown in

Table 2. Similar to SHIPS (DeMaria and Kaplan 1994)

and SPIKE (KM14), the explained variance for the

targeted tendency value increases with increasing fore-

cast hour. The correlation between IKE tendency pre-

dictions from SPIKE2 with GEFS F00 data and the

observed historical dataset was r 5 0.73 at a 12-h fore-

cast window compared to r 5 0.91 at 72 h. This seem-

ingly counterintuitive result can be explained by

considering that the magnitude of IKE tendencies in-

creases with growing forecast hour, such that random

fluctuations and observational biases are less impactful

at longer forecast hours. Furthermore, forecast errors

are not present in any of theGEFS F00 input parameters

such that the input parameters are no less accurate at

72 h than they are at 12 h.

In addition to predicting IKE tendency, SPIKE2 can

also predict the actual value of IKE at the validation

time by adding its IKE tendency prediction to the

persistence IKE value from the model’s initialization

time. KM14 found that the IKE metric was somewhat

resistant to change because it considers the energy

across a storm’s entire wind field. As a result, it is un-

surprising that SPIKE2 performs better at predicting

IKE than it does at predicting IKE tendency because it

can use the decent performance of a persistence IKE

forecast to its advantage, especially in short forecast

windows. At a 12-h forecast window, SPIKE2 explains

91% of the observed variance (r5 0.95) when using the

GEFSF00 input parameters. That performance does not

degrade sharply, as the explained variance remains near

80% (r 5 0.90) at a longer 72-h window.

While these high correlations are promising, they are

somewhat meaningless if similar performance can be

achieved by simply using a persistence forecast. En-

couragingly, the SPIKE2 calibration model has a lower

72-h forecast error than does a much shorter 24-h per-

sistence forecast. To provide another metric for com-

parison, we have evaluated the mean-squared error

(MSE) from SPIKE2 over its calibration dataset

against a persistence forecast at each corresponding

forecast hour in Fig. 2. Overall, SPIKE2 has lower MSE

than does persistence by a fair margin (45% at a 12-h

forecast window, climbing up to 82% by 72h). The im-

provements over persistence are statistically significant

at a p 5 0.025 level for all forecast intervals based on a

two-sample bootstrapping test.

Also shown in Fig. 2 are the reproduced results

from the original linear version of SPIKE detailed in

KM14. These results are also calculated over the

model’s calibration interval, 1990–2011, but as noted

earlier, the two models used predictors from entirely

different datasets making this comparison uneven.

Nonetheless, the calibration statistics indicate that

the linear SPIKE model simply cannot measure up to

the neural networks in SPIKE2, although both models

offer substantial improvement over persistence. Like

the results of section 4d, this evidence continues to

support our hypothesis that the neural networks will

be superior to simple linear regression because it

can account for the nonlinearities in the TC-

environment system.

Although these initial calibration results appear to be

encouraging, it should once again be noted that the

hindcast version of SPIKE2 discussed in the following

section will use imperfectly reforecasted input parame-

ters from the GEFS control runs. As such, it would be

unfair to expect SPIKE2’s hindcasts in the following

section to achieve these high performance benchmarks.

Instead, the performance metrics shown in Table 2 can

be viewed as the maximum potential skill that can be

obtained by SPIKE2. The intent of these performance

TABLE 2. Performance of SPIKE2’s deterministic forecast when

evaluated with the calibration input set from the GEFS F00 ana-

lyses. Sample size indicates the amount of storm fixes that were

included at each forecast hour, Rtendency measures the correlation

between the observed IKE tendency value and the predicted IKE

tendency value from SPIKE2’s output, and RIKE measures the

correlation between the observed IKE value at validation time and

the predicted IKE value calculated by adding SPIKE’s tendency

prediction to the existing persistence value from initialization time.

Mean error is simply the mean absolute difference between the

predictions from SPIKE2 and the observed IKE values.

Forecast hour Sample size Rtendency RIKE Mean error (TJ)

12 1097 0.73 0.95 7.8

24 974 0.83 0.92 10.7

36 859 0.83 0.90 12.5

48 773 0.86 0.89 13.4

60 679 0.89 0.91 13.2

72 614 0.91 0.90 14.1
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benchmarks is to determine how the model will degrade

when forecast errors are introduced to the model input

fields. Nonetheless, the exercise proved useful by

identifying a set of weights within the artificial neurons

that can be used to produce hindcasts of IKE from the

GEFS reforecasts.

6. Performance of SPIKE2 hindcasts using GEFS
reforecasts

In this section, we will adapt the SPIKE2ANN system

to run in a hindcast mode with the GEFS reforecast

control run from 1990 to 2011. As just discussed, the

network will retain the same neuron weights that were

calibrated in the previous exercise with GEFS control

analyses. However, unlike the calibration exercises the

neural networks will be given imperfect input parame-

ters from the GEFS reforecast control run at various

lead times out to 72h. This will enable us to determine

how forecast errors affect SPIKE2’s ability to predict

IKE. We can understand from this analysis of predictive

skill whether or not SPIKE2 might offer skillful opera-

tional support in a real-time environment.

Much like the last section, we will evaluate the de-

terministic forecast from SPIKE2 using the target IKE

tendency and IKE values as the historical baseline.

Statistics such as correlations andmean absolute errorswill

be used to detect the magnitude of performance de-

terioration relative to themaximumpotential performance

levels obtained in the calibration exercise. As was done in

the earlier calibration exercises and in KM14, SPIKE2’s

deterministic skill will be evaluated relative to simple

persistence forecasts. However, in addition, a new more

challenging benchmark will also be introduced by way of a

simple statistical model that considers climatology and

other nonforecast parameters.

Such a benchmark model would follow in the foot-

steps of the Statistical Hurricane Intensity Forecast

model (SHIFOR), which uses seven known parameters

at initialization time to set the baseline performance for

operational intensity forecasts (Jarvinen and Neumann

1979; Knaff et al. 2003). The exact parameters of

SHIFOR include the following: Julian day, initial storm

intensity, previous 12-h intensity change, initial latitude,

initial longitude, initial zonal component of storm mo-

tion, and initial meridional component of storm motion.

These SHIFOR climatology and persistence predictors

are somewhat relevant to IKE tendency as well.

Therefore, an IKE statistical persistence model named

the Benchmark of Integrated Kinetic Energy (BIKE) is

created to predict IKE tendency in a simple linear re-

gression model using the same seven input parameters,

with two exceptions. First, the 12-h intensity change

parameter will be switched out for a 12-h IKE change

parameter. Second, the initial or persistence value of

IKE will be added as an eighth predictor. This BIKE

regression model is trained using all 0000 UTC storm

fixes from 1990 to 2011, such that its calibration fit will be

compared to the GEFS–SPIKE2 hindcasts at lead times

of 24, 48, and 72h for the same 1990–2011 interval.

Case studies act as a good first step to evaluate the

SPIKE2 hindcasts relative to their assortment of

benchmarks in an effort to see how IKE forecasts might

perform during significant landfalling events. To that

end, Fig. 3 contains a plot of SPIKE2 hindcasts shown

against historical values of IKE just prior to landfall for

Hurricanes Floyd (AL081999), Katrina (AL122005),

Ike (AL112008), and Irene (AL122011). Each of these

four storms gained considerable IKE as they ap-

proached land, and as a result, a persistence forecast

would have greatly underestimated the storm’s de-

structive potential at landfall. BIKE proves to be a more

challenging benchmark for SPIKE2 in these four case

studies, as it arguably outperforms SPIKE2 for Hurri-

cane Floyd. Nonetheless, the SPIKE2 hindcasts out-

perform BIKE in most other cases. The SPIKE2

hindcasts for Irene were particularly impressive as the

green curve representing the hindcast remains very close

to the black line representing the observations

throughout the 72-h forecast period. One final item of

note, in nearly each case, the SPIKE2 hindcast using

reforecasted predictors performs worse than the

FIG. 2. Evaluation of SPIKE2 skill in a calibration mode with

GEFS analyses relative to a persistence forecast. Calibration skill is

measured as a percent reduction of MSE for the model’s de-

terministic predictions from 1990 to 2011, with respect to similar

MSE calculations for a persistence forecast at various forecast

hours. A reduction of MSE is plotted as a positive percentage,

indicating that the model has outperformed persistence. SPIKE2

has significantly lower MSE than persistence at the p 5 0.05 level

for all forecast hours. For reference, the reproduced results of the

linear regression version of SPIKE as detailed in KM14 are

also shown.
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SPIKE2 calibration model using predictors from ana-

lyses. This result is expected, as it suggests that the

performance of the ANNs will degrade with the in-

troduction of forecast errors in the series of input

predictors.

Moving to amore general perspective, mean error and

correlation statistics are shown on a line plot in Fig. 4 for

all of the storm fixes within the 1990–2011 evaluation

sample. The SPIKE2 hindcasts are capable of explaining

more than 80% of the variance in the historical IKE

record with a day of lead time, and mean absolute errors

are approximately 12 TJ in the same 24-h forecast win-

dow. As lead time increases, hindcast performance ex-

pectedly decays, but the model is still capable of

explaining 70% of the historical IKE variance at 48 h

and 62% at 72h, with errors of 16.6 and 20.7 TJ at those

times, respectively.

The performance of the hindcast easily exceeds the

performance benchmark set forth by a persistence

forecast. For instance, a 72-h SPIKE2 hindcast has com-

parable error on average to a half-as-long 36-h persis-

tence forecast. Mean-squared error statistics paint a

similar picture (Fig. 5), as the SPIKE2model offers a 60%

reduction of MSE at 24-h relative to persistence. This

reduction in MSE relative to persistence holds steady as

forecast hour increases, fluctuating between 50% and

70%between 24 and 72h of lead time. The lack of a trend

with advancing forecast hour in this MSE reduction

metric (outside of the first 12–24h, where persistence

forecasts excel) is likely attributed to a balance between

rapidly increasing persistence error (lowering the

benchmark), and increasing forecast errors in the input

data holding back the SPIKE2 scheme (decreased hindcast

performance). The significance of these improvements

is once again tested with a two-sample bootstrapping

exercise. Results indicate that the SPIKE2 hindcasts

are significantly better than persistence at the p 5 0.05

level for all forecast windows greater than 12 h, and at

the p5 0.01 level for all forecast windows greater than

or equal to 48 h.

Unsurprisingly, the BIKE model is indeed a tougher

benchmark than just a simple persistence forecasts as

noted by both the correlation and mean error metrics.

For instance, BIKE has a 12% lower mean absolute

error at 72 h than does persistence. Nonetheless, the

SPIKE2 hindcasts still clearly outperform BIKE. For

FIG. 3. 72-h runs of SPIKE2 plotted against benchmarks and the observed IKE values (black lines) for notable

hurricanes immediately prior to their landfalls. SPIKE2 hindcasts utilize GEFS reforecasted predictors from a run

initialized at the time specified in each legend. SPIKE2 calibration runs utilize analyzed predictors from the GEFS

archive valid at each forecast time. The benchmarkmodel is initialized at the same time as the SPIKE2 hindcast run

for direct comparison purposes. Not explicitly shown is a persistence forecast that would be represented by

a horizontal line stretching from the first observed IKE value on the left through the entire 72-h period.
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instance, BIKE’s mean absolute errors are more than

30% higher than the SPIKE2 hindcast errors at all three

of the shown forecast windows.

On the other hand, the performance of the hindcasts

falls short of the higher performance levels found during

the calibration exercises. Again, this result was expected

because statistical–dynamical prediction schemes are

only as accurate as the input data going into the statis-

tical model. In this case, the GEFS reforecasts include

forecast errors that were not present in the analyses,

which results in this degradation of performance.

Furthermore, a lesser decrease in performance should

also be expected just by running the ANNs on a dataset

that they were not calibrated with (i.e., the GEFS F00

analyses).

Nonetheless, the drop in performance from the cali-

bration tests to the hindcast tests is not a hindrance.

Mean errors only increased by less than 15% and cor-

relations only decreased by less than 7% inside the

shorter 12- and 24-h windows. Growing inaccuracies in

the GEFS input variables, led to a more dramatic de-

crease in performance at larger longer forecast windows

relative to the maximum potential performance level in

the calibration exercises. However, once again, these

hindcasts are still convincingly skillful relative to a per-

sistence forecast. In fact, the hindcast performance

metrics (green curve) are much closer to the potential

performance metrics in the calibration runs (blue curve)

than they are to the persistence performance bench-

marks (red curves).

7. Conclusions and outlook for future operational
development

Despite the promise of the hindcast results presented

above, there is still some work left to be done to adapt

this model for operational use. For example, the neural

networks would likely need be recalibrated to receive

operationally predicted input parameters from a desired

model in real time unless the targetedmodel is similar to

the GEFS reforecast data used here (such as the oper-

ational GEFS). If recalibration is needed, a sufficiently

long historical database will once again be needed to

normalize the predictors and set the neuron weights.

This limitation is one of the primary reasons for using

the control run in the available GEFS reforecast data-

base. Despite its coarse 18 resolution, the GEFS archive

contained a long record of data from a static version of

the same model. Unfortunately, few operational models

have long archives of forecasts or hindcasts that are

readily available. Therefore, adapting SPIKE2 to be

used with a higher-resolution operational model or

model ensembles is dependent upon securing an archive

for the desired model. As such, adapting SPIKE2 to the

FIG. 4. Performance statistics for SPIKE2. (a) Correlation and

(b) mean absolute error values, in units of TJ, are shown between

the historical record and SPIKE2 in various modes or a persistence

forecast. The correlation value that is shown in these plots is for

IKE, not IKE tendency. Calibration statistics are identical to those

in Table 2, and are used as a maximum potential reference point to

determine the degradation of skill when forecast error is in-

troduced to the model in the hindcast runs via the input parameters

from the GEFS reforecast. Also shown for reference is the per-

formance of a persistence forecast and the statistical climatological

and persistence model, BIKE.

FIG. 5. Evaluation of SPIKE2 skill relative to a persistence

forecast. Performance is once again measured as a percent re-

duction of MSE for the model’s deterministic predictions from

1990 to 2011, with respect to similar MSE calculations for a per-

sistence forecast at various forecast hours. The calibration skill is

reproduced from Fig. 2 and is shown alongside the skill of the

SPIKE2 hindcasts with reforecasted input parameters relative to

persistence. The hindcast model is significantly better than persis-

tence at the p 5 0.05 level for all forecast hours greater than or

equal to 24 h in length.
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rest of the GEFS ensemble members at a similar reso-

lution or to archived model data stored in The Observ-

ing System Research and Predictability Experiment

(THORPEX) Interactive Grand Global Ensemble

(TIGGE) archive would be easier to accomplish than

would be adapting SPIKE2 to work with predictors from

the Hurricane Weather Research and Forecasting

(HWRF) Model.

In addition to calibration, future work must focus on

determining whether or not SPIKE2 forecasts can be

made in a timely manner. SPIKE2’s products almost

certainly cannot be issued instantaneously at initializa-

tion time. Although the neural networks themselves can

be run fairly quickly, an operational version of SPIKE2

still requires dynamically forecasted input parameters,

and unfortunately, the output from most modern dy-

namical models is not available until a few hours after

their initialization time. Therefore, statistical-dynamical

models dependent upon forecast model data, such as

model output statistics (MOS) and in the future

SPIKE2, cannot come out until the dynamical models’

run time concludes. As a result, a 72-h SPIKE2 forecast

using GFS or GEFS data would be already a few hours

into its forecast period by the time it was issued, thus

shortening it to a 66–70-h forecast depending on the

actual issuance time.

A large delay between issuance and initialization

would be detrimental to the usefulness of SPIKE2 be-

cause most operational forecasters are required to issue

their forecasts at regular intervals. To alleviate this

concern some operational statistical–dynamical models,

are run in a so-called early cycle mode, wherein each

product uses environmental predictors from the pre-

vious dynamical model run, which is typically initialized

6 h earlier (i.e., the 0000 UTC forecast uses dynamical

predictors from an 1800 UTC model). Adapting this

early cycle approach to SPIKE2 will ensure that its IKE

forecasts are in advance of each forecast advisory.

Consequently, SPIKE2’s dynamical predictors in an

early cycle mode would be several hours old before

SPIKE2 is even issued. As such, the need to forecast the

input parameters an additional few hours into the future

would likely result in a slight degradation to model skill.

Considering that SPIKE2 hindcasts outperform much

shorter persistence forecasts, this may not have a sub-

stantial effect on performance. Nonetheless, it will be

necessary to compare the pros and cons of running

SPIKE2 in this early cycle mode against attempting to

develop an interpolator to issue SPIKE2 forecasts in a

‘‘late cycle’’ mode as real-time development of SPIKE2

continues.

Nonetheless, the results presented in the earlier sec-

tions serve as a proof of concept, suggesting that SPIKE2

could be a viable product in an operational setting once

these hurdles are cleared. In calibration exercises, the

deterministic scheme is capable of explaining the major-

ity of variance in the historical IKE archive, and offers a

significant improvement over persistence. Importantly,

the addition of imperfectly predicted input parameters

from a coarse GEFS control run archive did not cause

SPIKE2’s performance to drop off severely. Instead,

SPIKE2 hindcasts from 1990 to 2011 still exhibit signifi-

cant skill over any known IKE persistence or climatology

metrics, despite the inclusion of forecast errors from a

rather coarse-resolution GEFS dataset. Not to mention,

the briefly discussed SPIKE2 probabilistic products add

value to the deterministic IKE forecasts by offering a

quantitative estimate of uncertainty in the statistical

neural network scheme.

With the inclusion of input parameters from a higher-

resolution dataset that is capable of better resolving

some of the storm specific predictors, it may be possible

to improve SPIKE2’s skill even further. Nonetheless, if

even the level of performance by SPIKE2 with the

GEFS reforecast data can be maintained when adapting

SPIKE2 for operations, it would surpass the ability of

any known guidance specifically targeted for de-

terministic IKE prediction.
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